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ABSTRACT 
In the present paper we report the diffusion-induced modulational instability (MI) of an intense laser beam in 

materials (BaTiO3) with high dielectric constant using quantum hydrodynamic model of plasmas including 

Bohm potential and Fermi degenerate pressure. For the study of modulation interaction, we have considered that 

the origin of this nonlinear interaction lies in the third order nonlinear electrical susceptibility arising due to 

diffusion-induced nonlinear current density and strain dependent polarization of the medium. We have studied 

the qualitative behavior of parametric dispersion, gain profile and threshold value of pump field with respect to 

different parameters. It is found that due to the quantum effect the growth rate of MI in the limited range of 

parameters increases and required threshold amplitude of wave reduces. Hence the result of this analysis would 

be useful in designing acousto-electric modulators.     
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I. INTRODUCTION 
In recent years, there has been considerable interest in global properties of semiconductor quantum plasma. 

Before delving into the peculiarities of quantum plasmas, it is necessary to understand what is meant by this 

term. Indeed, all plasmas are in some sense quantum, as they consist of charged particles that obey the laws of 

quantum mechanics. However, as the density of classical plasma increases, or its temperature decreases, it can 

enter a regime when the quantum nature of its constituent particles starts to affect its macroscopic properties and 

dynamics. Quite naturally, such plasmas are called quantum plasma [1]. The simplest example where both 

plasma and quantum mechanical effect coexist is the free electron gas in a metal. During the past few years 

there has been a great interest in the study of quantum effects in plasma in view of its potential utility found in 

laser plasma interaction [2], and in ultra small electronic devices[3] and in metal nanostructures [4].   

 

The nonlinear interaction between matter and wave in plasmas is one of the most important subjects of plasma 

physics. Nonlinear plasma physics is an area of extensive research because of its attached technological interest. 

Plasma nonlinear effects are often used to illustrate general nonlinear phenomenon in arbitrary media. 

Modulation interaction is one of the most basic nonlinear phenomenon in plasma physics. Such interactions 

describe various modulational effects in nonlinear media, such as frequency modulation, amplitude modulation, 

phase modulation, self modulation etc. Modulation instability (MI) is one of the most ubiquitous types of 

instabilities associated with wave propagation in plasmas and plays a key role in the development of many 

nonlinear plasma processes. 

 

MI is a universal phenomenon that exists in many nonlinear systems such as fluids, plasma, nonlinear optics, 

discrete nonlinear systems, such as molecular chains and Fermi-resonant interfaces and waveguide arrays [5-8], 

etc. The phenomenon of MI is of great interest both for the general theory of nonlinear waves and for its 

applications. MI exists due the interplay between the nonlinearity and dispersion or diffraction. It was first 

observed by Benjamin and Feir [9] for waves on deep water and by Bespalov and Talanov [10] for EM 

(electromagnetic) waves in nonlinear media. In its simplest version, the modulation instability phenomenon 

consists in the instability of nonlinear plane waves against weak long-scale modulations with frequencies lower 

than some critical value. Long time evolution leads to the growth of side bands and a periodic exchange of 

energy between a pump and sidebands during the wave propagation. In modern nonlinear optics MI is 
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considered as a basic process that classifies the qualitative behavior of modulated waves (envelope waves) and 

may initialize the formation of stable entities such as envelop solitons [11].  

 

In this context, MI is a passive nonlinear effect due to its potential utility in ultrafast technologies. Recent 

progress in micro- structured optical fibers offers new opportunities for the control of dispersive properties and 

thus, to new potential applications of MI across a broad spectral range. Qualitative analysis of the modulation 

instability is important for design and optimization of fiber lasers and amplifiers in which the wave intensity 

grows up exponentially and MI dramatically intensifies nonlinear instabilities. As a nonlinear fiber effect is 

sensitive to dispersion, MI is also very attractive for various measurement techniques [12-13].  A wide range of 

literature is available on the investigation of modulation interactions in semiconductor plasma (with and without 

quantum effect) [14-20].  However, in all these studies any condensed treatments based on the nonlinear effects 

such as diffusion of the excitation density that is responsible for the nonlinear refractive index change in 

quantum plasmas with SDDC (Strain dependent dielectric constant) effect has been normally ignored.   

 

Motivated by the present status, in this paper authors aim to highlight some of the modifications occurred in MI 

in diffusive semiconductor plasma with SDDC due to quantum effect through Bohm potential. The purpose of 

the work is to produce a quantum counterpart starting with the quantum hydrodynamic model (QHD) of charged 

particle system proclaimed by Manfredi and Hass [21]. To do this, we consider some of the well-known 

concepts and phenomena familiar to all plasma physicists to see how they change, often qualitatively in 

quantum plasma as compared to their counterparts in classical plasma. Our purpose in this paper is to investigate 

the modulational instability in a semiconductor material with high dielectric constant. We assumed that it is due 

to a parametric four-wave mixing process involving the incident pump, the upper and lower side band signals 

and induced acousto-electric idler wave characterized by the cubic nonlinear susceptibility. To our knowledge, 

no systematic study has yet been performed to investigate the effect of strain-induced deformations (depending 

on the nature of the medium) on the modulational interaction of electromagnetic waves in diffusive 

semiconductor quantum plasma. The strain dependence of the optical susceptibility of a semiconductor results in 

an additional acousto-electric interaction in the presence of a static electric field, which may even be stronger 

than piezoelectric. In the present article, the third order susceptibility due to nonlinear induced current density, 

threshold pump amplitude required to incite the modulational amplification and the growth rate of modulated 

wave in quantum plasma are derived and studied them to investigate the effect of parameters of high dielectrics. 

We found the acoustoelectrical modulational amplification of the laser beam to be higher in diffusive 

semiconductor materials with high dielectric constant with quantum effects compared to those found in other 

media. 

 

II. THEORETICAL FORMULATION  

In this section, we deal with theoretical formulation of the modulation interaction in n-type diffusive 

semiconductor plasma having SDDC arising due to third order susceptibility using QHD model. In order to 

determine the third-order susceptibility, we consider that a spatially uniform pump electric field 

  txkiE 000 exp 
is applied along the positive x direction. We proceed with the zero order and first order 

electron momentum transfer equations of the QHD model given as 
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Where 0V
 and 1V  are the zeroth and first order oscillatory fluid velocities of an electron of effective mass m  

and charge e .   is the phenomenological electron collision frequency. 

In above equation fP
 is Fermi pressure given as 
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 with m

TK
V fB

f

2


is  the Fermi speed in which BK  is the Boltzmann constant and fT
 is the Fermi 

temperature of electrons. Pressure is interpreted as an outcome of velocity dispersion around the mean velocity 

of the fluid. Therefore, equation (3) can be stated as equation of state to a one dimensional zero temperature 

Fermi gas. Our analysis is based on the QHD model which includes two different quantum effects: (i) quantum 
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diffraction due to quantum correlation of density fluctuations that is taken into account by the term proportional 

to the 
2 in equation (2), where   is the Planks constant divided by 2 , (ii) quantum statistics is included in 

the model through the equation of state [Eq. (3)] which takes into account the Fermionic character of the plasma 

particles [22]. These contributions may be interpreted alternatively as quantum pressure terms or as quantum 

Bohm potentials. In other applications in semiconductor physics, the Bohm potential is responsible for tunneling 

and differential resistance effects. Quantum mechanical effects become important when the inter-electron 

distance is of the order of the thermal de Broglie wavelength and the temperature is lower than the Fermi 

temperature. Here the overlapping of electron wave functions occurs Heisenberg’s uncertainty and Pauli’s 

exclusion principles. Here the contribution of hole on quantum diffraction effect can be neglected because the 

effective mass of a hole is more than the effective mass of an electron and therefore the drift velocity of a hole is 

less than the drift velocity of electron. 

 

To meet out the aim of this article i.e. for the derivation of third order susceptibility authors have used the one 

dimensional continuity and Poisson’s equations those are given below  
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 is the electron mobility. In equation (4) 0n
 

and 1n
are the equilibrium and perturbed carrier concentrations, respectively. In equation (5)   and 

g
are the 

scalar dielectric and coupling constants, respectively. In modulation process pump beam generates an acoustic 

perturbation due to the lattice vibrations at the phonon mode frequencies within the semiconductor medium. The 

lattice vibrations lead to an electron-density perturbation which couples nonlinearly with the pump wave and 

drives the acoustic waves at modulated frequencies. The equation of motion of the acoustic wave in a 

centrosymmetric medium is given by 
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Where u is the lattice displacement, 


is the mass density of the crystal, C  the elastic constant. 

 

In the multimode theory of MI process, the influence of a strong pump beam generates a carrier density 

perturbation, which is associated with phonon-mode and varies with the acoustic frequency. The equation for 

density fluctuation of the coupled electron-plasma wave in a n-type diffusive semiconductor quantum plasma, is 

obtained by using equations (4) and (5) as 
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The pump beam thus oscillates at the density perturbation to produce forced wave disturbances at 
 0 a the 

upper (anti-Stokes) and 
 0 a  the lower (Stokes wave) sideband frequencies [23]. In the present work the 

higher order scattering terms, being off resonance can be filtered out and we are left with first order resonant 

sideband frequencies 
 0 a  by assuming a long interaction path [14]. Thus the density perturbations 

oscillating at these side band frequencies can be expressed after simplification as 
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Here 0  a  and 0  a . In the analytical study of modulation process, we have neglected the 

effect of the transition dipole moment with the view to study the contribution of nonlinear current density due to 

diffusion of the charge carrier only. The diffusion induced nonlinear current density for the upper and lower 

sidebands, respectively can be represented by 
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The induced cubic nonlinear electric polarization being the time integral of the nonlinear current density 

  kJd ,
 at the modulated frequency, may be expressed as 

    .,, dtkJkP dd   
                                                                                                              (10)                                                                                                     

 

Thus diffusion-induced polarization has contribution from both upper and lower side bands and can be 

represented as 
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Thus from equations (8) to (11), the total effective third order diffusion induced polarization becomes 
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Where
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The induced polarization due to cubic nonlinearities at modulated frequencies   k,  is defined as, 
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Due to the carrier diffusion, in four-wave parametric process induced effective nonlinear susceptibility of the 

third order can be obtained using equations (12) in (13) as 
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Equation (14) characterizes the steady-state optical response of the medium and governs the nonlinear wave 

propagation through the medium due to diffusion of the charge carrier. Hence, the process may be termed as 

diffusion-induced modulation interaction. It is evident from the above expression that 
 3

is found to be 

influence by the quantum and SDDC effects and also depends upon material parameter, such as equilibrium 

carrier concentration 0n
 via the plasma frequency p

. After rationalization of equation (14), one can easily 

obtain real and imaginary parts of effective nonlinear susceptibility for nondispersive acoustic mode as 
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The real part of 
 3 displays the dispersive characteristics of the modulated wave, whereas the imaginary part 

of 
 3 can be used to obtain the gain. It can be observed from equation (15a) that there is an intensity 

dependent refractive index via  
  3

real
 leading to the possibility of a focusing or defocusing of the propagating 
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beam. On order to search the possibility of modulation amplification in a semiconductor medium, we employ 

the relation 
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Here,   is the effective nonlinear absorption coefficient. The nonlinear steady state growth of the modulated 

signal )( sg  is possible only if   obtainable from equation (16) is negative. Thus the growth rate of the 

modulated beam for pump amplitudes well above the threshold electric field can obtained from the equations 

(15b) and (16) as  
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The necessary threshold value of the pump amplitude required for the onset of the MI is given by 
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The above equation describes that the threshold value is affected by the quantum correction term through
22

0

2 )( Dkp  
.  

 

III. RESULTS AND DISCUSSION 
The In For analytical investigation of the modulation interaction processes we consider the irradiation of 

semiconductor sample BaTiO3 by CO2 laser at 77K. The following material parameters are taken as 

representative values to establish the theoretical formulation: 

00145.0 mm 
,

2000s ,
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111105  s ,
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0 sec1078.1 
112 sec102 a ,

33104  kgm kT 77  

Using the above parameters the results of our calculations are depicted in the form of curves in the figures 1-5. 

 

1. Threshold characteristics 

Figure 1 shows the dependence of threshold (with and without quantum effect) on wave number k . It is seen 

that the threshold field [which is inversely proportional to the wave vector k  evident from eq. (18)] decreases 

with increase in magnitude of wave vector k  in absence of quantum correction term. Figure shows that the 

threshold electric field (in presence of quantum effect) decreases with increase in wave vector when
2

0

2  p .  

 

The threshold electric field attains its minimum value 
16

0 10239.1  VmE th  at 
18102  mk , when 

2

0

2  p   condition is achieved. Further if we increase wave vector beyond this critical value, the threshold 

required for the onset of modulational amplification increases. This sharp fall and rise in the characteristics of 

the threshold electric field may be attributed to the resonance between p
 and 0

 in presence of quantum 

correction term 
 22
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through
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. It may be observed from this figure that 

the presence of quantum correction term reduces threshold electric field. 
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Figure 1 : 
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Variation of threshold electric field (with and without quantum effect) thE0  with wave vector k  when
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0 10  mn
. 

 

2. Dispersion characteristics 

In this section the numerical analysis dealing with the external parameters influencing the parametric dispersion 

arising due to the real part of the third order susceptibility, viz., 
  3

real  for the onset of modulational 

amplification process are plotted in fig. (2) and (3). From the figures (2) and (3) it is clear that the variation of 

  3

real
 with k and 0n

 are identical in both the cases (with and without quantum effect). The only difference 

lies in the corresponding magnitudes. The susceptibility profile is similar to the dispersion characteristics of III-

V semiconductors. 

  

It can be observed that 
  3

real
 exhibits the usual dispersive characteristics of a medium with complex refractive 

index. Figure (2) shows the behavior of  
  3

real
, obtained from the equation (15a) with respect to k  . Initially 

the curve shows that when aakV 
, both the real part of susceptibilities (with and without quantum effect) 

are negative quantity and remains constant with k . On further increase in k the susceptibility 
  3

real
 abruptly 

decreases and attains its minimum value 
   22143 1028.3  Vmreal

 (with quantum effect) and 
   22143 10290  Vmreal

(without quantum effect) at 
18105.6  mk . A slight increase in k beyond 

this point cause a sharp rise in 
  3

real
 , making it vanish at resonance peak when aakV   . After this 

resonance condition, 
  3

real  increases sharply and then again decreases rapidly and becomes constant at larger 

values of wave vector. 

 

Figure 2 : 
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Variation of real part of the susceptibility
  3

real
  with wave number k with and without quantum effect. 
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Real part susceptibility
  3

real   has been analyzed in figure 3 for the cases with and without quantum effect as a 

function of 0n
 at a particular value of the pump electric field 0E

 in the vicinity of othE
. It may be infer from 

figure that the susceptibility for both the cases can be negative and positive sign. For 1 p , susceptibility 

increases with 0n
 then when 

326

0 104  mn
susceptibility changes the sign attributing negative dispersion 

(absorption) characteristics at resonance condition 
)( 1 p . After this resonance condition as increase in 

carrier concentration the susceptibility acquires negative values and saturates at larger values of 0n
. effectively 

reduce the electron bunching and consequently gain will be reduced. 

 

Figure 3 : 
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Variation of the real part of the susceptibility
  3

real
 with carrier concentration 0n

 at
17

0 106.1  VmE
 and 

17103.2  mk . 

 

It may be inferred from figures 2 and 3 that a proper selection of wavelength regime and doping concentration 

we can achieve either positive or negative significantly enhanced parametric dispersion.  

 

3. Amplification Characteristics 

Figure 4 shows the dependence of gain coefficient associated with the modulation process on the pump electric 

field 0E
 at 

17102.3  mk .We have drawn two curves in presence and absence of quantum correction. It is 

found that initially gain is nearly independent of 0E
 up to

17

0 102.3  VmE
. In this regime, natures of 

variation of gain for both the cases (with and without quantum effect) are identical and gain is modified due to 

presence of quantum effect. This figure depicts that the gain increases rapidly with increase in 0E
 and attains its 

maximum 
)1052.10( 116  mgs

17

0 10301.3  VmE
(with quantum effect) and 

)10753.0( 116  mgs

17

0 10285.3  VmE
 (without quantum effect). A slight increase in the value of 

0E
 beyond this point yields a sudden fall in the value of gain in both cases up to 

17

0 1035.3  VmE
and 

again becomes independent of 0E
 with a negligible negative value.  In this regime also, quantum correction is 

found responsible for increment in gain. It is observed that in presence of quantum term the gain attains its 

maximum and minimum value at higher pump amplitude. Hence, one may infer from this figure that to achieve 

a high gain coefficient, the input pump amplitude should lie between
17

0 102.3  VmE
and

17

0 1035.3  VmE
 for the parameter range under study. 
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Figure 4 : 
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Variation of gain sg
 with pump field amplitude 0E

 when 
324

0 106  mn
and 

17102.3  mk . 

 

The numerical estimations {using Eq.(17)} dealing with the wave number k influencing the growth rate sg
are 

plotted in figure 5 at 
17

0 10  VmE
 and 

324

0 104  mn
 in presence and absence of quantum term. One 

may infer from the graph that sg
increases sharply with k when aaa Vk

. The similar effect of wave 

number k  on modulated growth rate in electrostrictive semiconductor plasma was reported by Ghosh and 

Yadav 2007 [24] but in present study author gets the high growth rate with materials of high dielectric constant 

in presence of quantum term through   in equation (17) as compared to them. Hence quantum effect is found 

to be responsible for increasing the growth rate.  

 

Figure 5 : 
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Variation of gain sg
with wave number k  with and without quantum effect. 

 

IV. CONCLUSION 
Our analytical and numerical study on MI process in semiconducting quantum plasma with SDDC shows that 

the frequency modulation of plasma waves is affected significantly by the quantum effect. Based on the above 

results we present the following conclusions- 

1. The method is use in this study have many advantages for applications in fabrication of any nonlinear 

device which also demanded an extensive theoretical as well as experimental study.  

2. In presence of quantum term threshold pump amplitude required for the incite MI process reduces by 

adjusting the wave number range which is of chief importance in designing the semiconducting 

devices.  

3. With quantum effect we get higher gain coefficients at high wave length regime. 

 

It is hoped that the diffusion-induced third-order nonlinearity in strain dependent dielectric materials may play a 

key role in the development of ultrafast modulator, micro-structured optical fibers etc.  

his fragment should obviously state the foremost conclusions of the exploration and give a coherent explanation 

of their significance and consequence. 
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